Nilpotent Matrices
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1 Introduction

Let n and k be non-negative integers, and define A(#n, k) to be the set of all n X n (0, 1)-
matrices containing exactly k ones that square to 0. In this note, we investigate the function
f(n, k) = k! [A(n, k)|.

k

fm,kplo 1 2 3 4 5 6 7 8 9
0 |1
1 |1

22

3 |1 6 6
4 |1 12 36 32 6
5 |1 20 120 280 280 120 20
6 |1 30 300 1320 2910 3492 2400 960 210 20

Table 1: | A(n, k)| for small values of n and k. (A052296)

2 Preliminaries

2.1 Graph Theory
We begin with some several elementary definitions in graph theory.
Definition 1 (Adjacency Matrices).

e Let (V,E) be a directed graph whose vertices are indexed as V = {v1,...,v,}. Its
adjacency matrix is the n X n matrix M with entries given by

- 1, if(vi,vj)eE,
v 0, otherwise,
where i, j € [n].

e Let (U, W,E) be a directed bipartite graph whose partite sets are indexed as U =
{ur,...,upyand W = {wy, ..., w,}. Its adjacency matrix is the m X n matrix M with
entries given by

)L if (u;, wj) € E,
v 0, otherwise,

where i € [m]and j € [n].
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Definition 2. A directed walk of length n is a sequence of vertices vy, ..., v,4+1 (possibly with
repetition) such that there exists a directed edge (v, v;+1) forall 1 < i < n.

It is well-known that powers of an adjacency matrix are closely related to directed walks.

Proposition 3. Let M be the adjacency matrix of a directed graph whose vertices are indexed as
V ={v1,...,0,}. Then (Mk)ij counts the number of directed walks of length k from v; to v;.

2.2 Combinatorics

The Stirling numbers of the first and second kind are written as [}] and {}}, respectively. The
falling factorial is written as (x), = x(x —1)...(x —n + 1). We write [n] to mean the set

{1,...,n}.
Throughout this paper, we make use of the following well-known combinatorial
identities.

Proposition 4 ([2, 5]). Let n and k be non-negative integers with n > k, and x a non-negative
real number.

n\ () | _ sy e (k)
(4.1) (k)‘?’ (4.2) {k}_ﬁg‘(_l) (1.)1,

43) (x), = Z(_l)n—k [Z]xn/ (4.4) Z {Z}(x)k _—

k=0 k=0

Definition 5. The Stirling transform of a sequence {a, },>0, denoted S[{a,}n>0], is defined
to be the sequence {b, },>0 given by

Example 6. From Identity (4.4), we see that S[{(x)s}n>0] = {x"}n>0. Conversely, Iden-
tity (4.3) tells us that ST [{x"},50] = {(x)n }ns0-

Proposition 7 ([1]). Suppose S[{an}n>0] = {bn}n=0 and define the exponential generating
functions

(o8] [o¢]

ay o, by ,
Ax) = Z P and B(x) = Z EAE

n=0 n=0
Then B(x) = A(e* —1).

3 Properties of f(n, k)

3.1 Generating Function

Theorem A. Let F(x;n) = Y;o, f(n, k) x*/k! be the exponential generating function of the
sequence {f(n, k)}k=o. Then

n

Fx;n) = (’Z) (@ +x)i=1)"

i=0



This result appears in [3], but a proof was omitted. We provide a proof here for
completeness.

Proof. Note that

F(x;n) = Z f(z; k)xk = Z | An, k)| x*.
k=0 ) k=0

We thus find the ordinary generating function for |A(n, k).
Let A € UysoA(n, k). If Ajj =1, then Ajy, = 0 for all m € [n]; if Aj, = 1 for some
m € [n], we obtain the contradiction

n
(Az)im = ZAitAtm > Al]A]m =1 * 0.
t=1

That is to say, if column j has a 1, then row j must be all zeroes.

Given two complementary sets A and B = [n] \ A, we let A be the indices of columns
that must have a 1, and B the indices of rows that could have a 1. We now count the
number of ways to construct A given some choice of A. Within each column j € A, we
can only place 1’s in the rows indexed by B. Since the column cannot be all zeroes, this
amounts to choosing a non-empty subset of B. Hence, the generating function recording
all possibilities for that particular column j is

|B]
B|\ .
Z (l .|)xZ =(1+x)B -1
o\
As the choices for different columns in A are independent, the ordinary generating function
over all columns is

((1 +x)lBl - 1)|A| .

Fix |A| =i,s0 |B| = n —i. There are (’l’) choices for A. Summing over all possible sizes i,
we finally obtain the generating function

n

F(xin)= Y (’:) (@+x)mi=1)"

i=0
O

Corollary 8. Let S(n) = Y.i_o |A(n, k)| be the total number of n X n matrices that square to 0.
Then

n

SOESY (’Z) (2 - 1)".

i=0

n|0|1|2| 3] 4 5 6
S(n) |11 (3]13 |87 | 841 | 11643

Table 2: S(n) for small values of n. (A001831)
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3.2 Formulas

In this subsection, we give several formulas for f(n, k). We begin with the following
combinatorial lemma.

Lemma 9. The number of directed bipartite graphs (S, T, E) with exactly k edges and no isolated
vertices is given by
ﬂzk:(—l)k—f K| (i) (i
S ills)(t)’

Proof. By considering the adjacency matrix, there is a one-to-one correspondence between
directed bipartite graphs with exactly k edges and no isolated vertices, and s x t (0, 1)-
matrices with exactly k 1’s and no all-zero rows or columns.

Let # denote the number of such matrices (equivalently, the number of graphs). We
count # using inclusion-exclusion. Let R; and C; denote the events that the ith row and
jth column, respectively, are all zero. Then the number of matrices with no all-zero rows

or columns is
#= > > (“)AHEIYR, N () Cy

ACS BCT aeA beB

wheres = |S| and t = |T|.

Grouping the terms by the sizes of A and B gives

ENINIPICE

i=0 j=0 ACS BCT
|Al=i|B|=j

(VRan[ )Gyl

aceA beB

Fix |A| = i and |B| = j. There are (%) choices for A and (;) choices for B. Consider the

event (,ea Ra N (pep Cp, in which the rows indexed by A and columns indexed by B are
all zero. There are (s — 7)(f — j) remaining positions to place the k 1’s in, so

NRr.n)C =(<S—f>k<f-f>).

acA beB
Substituting these values into our expression for # yields

g )

i=0 j=0

Applying the combinatorial identities listed in Proposition 4 finishes the proof.
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1=

s!t! mk 1y S (BN
S Y RI H| E i | SR

i=0
(%f)flfl k—m k|[m
s MIEIH

With this result, we are ready to find a formula for f(n, k).
Theorem B.

f<n,k>=§<—1>k-f[’§] > Mo

0<s,t<i

Proof. By Proposition 3, there is a one-to-one correspondence between A(n, k) and the
set of all directed graphs (V, E) with |V| = n and |E| = k that do not contain any directed
walks of length 2. We count the number of such graphs.

Let S and T be the sets of vertices with non-zero outdegree and indegree respectively.
Since all walks are of length one, the sets S and T are disjoint. Thus, for fixed sizes s = |S|
and t = |T|, there are (%) (";°) ways to choose S and T from V. Next, Lemma 9 tells us that
for any choice of S and T, there are

w2 LK

ways to draw k edges from vertices in S to vertices in T. Enumerating over all possible
sizes s and t, the number of directed graphs (and thus matrices) is

|ﬂ<n,k>|=i2k;('2)("ls)sm RN

s=0 t=

Writing (%) (";°) as (1)s4¢/s! t! and noting that the summand vanishes when s, t > i, we

obtain .
sty =kt = S0 5 { o

0<s,t<i

Remark. Theorem B generalizes the k = 2 case as discussed by the author in [7].

Applying Identity (4.4) to the formula given by Theorem B, the triple sum collapses to
the following double sum expression for f(n, k).



Proposition 10.

k i .
f(n, k) = Z(—l)k‘l [k] Z {;}(n)s(n _

Proof. Write (n)s4t = (n)s(n — s)¢. By Theorem B, this gives

flon, b = Z( v Y 1 {}(ms {'}m—s)t

S=

S -
i=0

s=0

O

Next, we use Theorem B to write f (1, k) as a polynomial in 2, with coefficients depending
on k.

Proposition 11.

s+t

2k k . .
TR CIAINC T WD Wt HIHI Il | P2
p=0 i=[p/2] M odorzi )WL p
s+t=p
Proof. From Theorem B, we have that
£ Tk] & (i ‘
f(n, k)= Z(—l)k—l H Z {S}(n)s(n —s).
i=0 s=0
Using Identity (4.3) to expand ()4 as a sum of monomials, we get
k k .\ S+t s+t
= _1)k-i S+t—p np
sl = Y HIDIRNL }Z( 1 .

0<s,t<i

Interchanging the order of summation so that we sum over p first yields the desired
expression. O

3.3 Stirling Transform and Chromatic Polynomials

Let P(K k, ) be the chromatic polynomial of the complete bipartite graph Ky . [6] gives

the closed-form
kl [k
P(Kx,n) = Z {S}{t}(ﬂ)w-
0<s,t<k

It follows from Theorem B that {P(K x, 1)} k>0 is the Stirling transform of { f (1, k)} k>o.
Proposition 12. P(Kj x, n) has exponential generating function

3 e

i \!
Proof. Let G(x;n) be the exponential generating function of {P(Ky,n)}k=0. Since

{P(Kkk, n)}ks=0 is the Stirling transform of {f(n, k)}r>0, we have by Proposition 7 that
G(x;n) = F(e* —1;n). Using the formula for F(x; n) given in Theorem A, we see that

G(x;n) = Zn: (1:) (exi _ 1)n—i .

i=0



3.4 Factorization
Proposition 13. For fixed n, the support of f(n,k)isk =0,...,[n%/4].

Proof. The degree of the ith term of F(x;n) is i(n — i), which attains a maximum of | n% /4]
when i = |n/2]. Thus, f(n,k) = 0 for all k > [n%/4]. To show that f(n, k) is non-zero
for k = 0,...,| n?/4], it suffices to construct a matrix A € A(n, | n?/4]), since for any
k < |n?/4] a matrix in A(n, k) may be obtained by replacing some of the entries of A from
1to 0.

Let 0,x» and 1, denote the a X b blocks whose entries all 0 and 1, respectively. We
construct A according to the parity of n.

Case 1: n is even. Write n = 2m, so | n?>/4| = m?. Then

A= (Omxm 1m><m) c ﬂ(Zm, m2)'

Omxm Omxm

Case 2: n is odd. Write n = 2m + 1, so | n?/4]| = m? + m. Then

A= (Omxm Linx(m+1) ) € AQRm + 1, m?* +m).
0(m+1)><m 0(m+1)><(m+1)
O
Remark. In the case where n = 2m is even, A is the adjacency matrix of the directed
complete bipartite graph ?mm When n = 2m +11is odd, A is the adjacency matrix of the
directed complete bipartite graph T<)m,,n+1.
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Figure 1: The directed complete bipartite graph ?2,3 and its adjacency matrix.

Proposition 14. Fix k and let ay = [2Vk]. Then f(n, k) = (n)q,P(n, k) for some monic
polynomial P(n, k) € Z[n] of degree 2k — a with no integer roots.

Proof. Recall from Theorem B that

£ L[k i\ (i
=S ] 5 o

It is easy to see that f(n, k) € Z[n]. Next, we note that deg((1)s++) = s + t < 2k, with
equality if and only if s = t = i = k. The corresponding term is

0 [ e e = o



which is monic. It follows that f(#, k) is a monic polynomial of degree 2k.

By Proposition 13, we see that f(#n, k) vanishes if and only if n < [2Vk] = ak. Thus,
the only integer roots of f(n,k) are n = 0,1,..., ak, giving the factorization f(n, k) =
(n)a, P(n, k), where P(n, k) € Z[n] is a monic polynomial of degree 2k — a; with no integer

roots. O
| k| P(n,k) |
0|1
1)1
2| -1+n
3 | 4-3n+n?
4 | 86 —96n +43n% — 1013 + n*
5 | =810 + 8861 — 41512 + 1051 — 15n* + n®
6 | —46440 + 59752n — 34168n? + 11341n° — 2380n* + 3201° — 261° + n”

Table 3: The polynomials P(n, k) fork =1,...,6
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