

Nilpotent Matrices

Eytan Chong

1 Introduction

Let n and k be non-negative integers, and define $\mathcal{A}(n, k)$ to be the set of all $n \times n$ $(0, 1)$ -matrices containing exactly k ones that square to 0 . In this note, we investigate the function $f(n, k) = k! |\mathcal{A}(n, k)|$.

		k									
		0	1	2	3	4	5	6	7	8	9
n	0	1									
	1	1									
	2	1	2								
	3	1	6	6							
	4	1	12	36	32	6					
	5	1	20	120	280	280	120	20			
	6	1	30	300	1320	2910	3492	2400	960	210	20

Table 1: $|\mathcal{A}(n, k)|$ for small values of n and k . ([A052296](#))

2 Preliminaries

2.1 Graph Theory

We begin with some several elementary definitions in graph theory.

Definition 1 (Adjacency Matrices).

- Let (V, E) be a *directed graph* whose vertices are indexed as $V = \{v_1, \dots, v_n\}$. Its adjacency matrix is the $n \times n$ matrix \mathbf{M} with entries given by

$$\mathbf{M}_{ij} = \begin{cases} 1, & \text{if } (v_i, v_j) \in E, \\ 0, & \text{otherwise,} \end{cases}$$

where $i, j \in [n]$.

- Let (U, W, E) be a *directed bipartite graph* whose partite sets are indexed as $U = \{u_1, \dots, u_m\}$ and $W = \{w_1, \dots, w_n\}$. Its adjacency matrix is the $m \times n$ matrix \mathbf{M} with entries given by

$$\mathbf{M}_{ij} = \begin{cases} 1, & \text{if } (u_i, w_j) \in E, \\ 0, & \text{otherwise,} \end{cases}$$

where $i \in [m]$ and $j \in [n]$.

Definition 2. A *directed walk of length n* is a sequence of vertices v_1, \dots, v_{n+1} (possibly with repetition) such that there exists a directed edge (v_i, v_{i+1}) for all $1 \leq i \leq n$.

It is well-known that powers of an adjacency matrix are closely related to directed walks.

Proposition 3. Let \mathbf{M} be the adjacency matrix of a directed graph whose vertices are indexed as $V = \{v_1, \dots, v_n\}$. Then $(\mathbf{M}^k)_{ij}$ counts the number of directed walks of length k from v_i to v_j .

2.2 Combinatorics

The *Stirling numbers of the first and second kind* are written as ${}[n]_k$ and $\{n\}_k$, respectively. The *falling factorial* is written as $(x)_n = x(x-1)\dots(x-n+1)$. We write $[n]$ to mean the set $\{1, \dots, n\}$.

Throughout this paper, we make use of the following well-known combinatorial identities.

Proposition 4 ([2, 5]). Let n and k be non-negative integers with $n \geq k$, and x a non-negative real number.

$$(4.1) \quad \binom{n}{k} = \frac{(n)_k}{k!},$$

$$(4.2) \quad \{n\}_k = \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n,$$

$$(4.3) \quad (x)_n = \sum_{k=0}^n (-1)^{n-k} [n]_k x^n,$$

$$(4.4) \quad \sum_{k=0}^n \{n\}_k (x)_k = x^n.$$

Definition 5. The *Stirling transform* of a sequence $\{a_n\}_{n \geq 0}$, denoted $\mathcal{S}[\{a_n\}_{n \geq 0}]$, is defined to be the sequence $\{b_n\}_{n \geq 0}$ given by

$$b_n = \sum_{k=0}^{\infty} \{n\}_k a_k.$$

The inverse transform, denoted $\mathcal{S}^{-1}[\{b_n\}_{n \geq 0}]$, is

$$a_n = \sum_{k=0}^{\infty} (-1)^{n-k} [n]_k b_k.$$

Example 6. From [Identity \(4.4\)](#), we see that $\mathcal{S}[\{(x)_n\}_{n \geq 0}] = \{x^n\}_{n \geq 0}$. Conversely, [Identity \(4.3\)](#) tells us that $\mathcal{S}^{-1}[\{x^n\}_{n \geq 0}] = \{(x)_n\}_{n \geq 0}$.

Proposition 7 ([1]). Suppose $\mathcal{S}[\{a_n\}_{n \geq 0}] = \{b_n\}_{n \geq 0}$ and define the exponential generating functions

$$A(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n \quad \text{and} \quad B(x) = \sum_{n=0}^{\infty} \frac{b_n}{n!} x^n.$$

Then $B(x) = A(e^x - 1)$.

3 Properties of $f(n, k)$

3.1 Generating Function

Theorem A. Let $F(x; n) = \sum_{k=0}^{\infty} f(n, k) x^k / k!$ be the exponential generating function of the sequence $\{f(n, k)\}_{k \geq 0}$. Then

$$F(x; n) = \sum_{i=0}^n \binom{n}{i} ((1+x)^{n-i} - 1)^i.$$

This result appears in [3], but a proof was omitted. We provide a proof here for completeness.

Proof. Note that

$$F(x; n) = \sum_{k=0}^{\infty} \frac{f(n, k)}{k!} x^k = \sum_{k=0}^{\infty} |\mathcal{A}(n, k)| x^k.$$

We thus find the ordinary generating function for $|\mathcal{A}(n, k)|$.

Let $\mathbf{A} \in \bigcup_{k \geq 0} \mathcal{A}(n, k)$. If $\mathbf{A}_{ij} = 1$, then $\mathbf{A}_{jm} = 0$ for all $m \in [n]$; if $\mathbf{A}_{jm} = 1$ for some $m \in [n]$, we obtain the contradiction

$$(\mathbf{A}^2)_{im} = \sum_{t=1}^n \mathbf{A}_{it} \mathbf{A}_{tm} \geq \mathbf{A}_{ij} \mathbf{A}_{jm} = 1 \neq 0.$$

That is to say, if column j has a 1, then row j must be all zeroes.

Given two complementary sets A and $B = [n] \setminus A$, we let A be the indices of columns that *must* have a 1, and B the indices of rows that *could* have a 1. We now count the number of ways to construct \mathbf{A} given some choice of A . Within each column $j \in A$, we can only place 1's in the rows indexed by B . Since the column cannot be all zeroes, this amounts to choosing a non-empty subset of B . Hence, the generating function recording all possibilities for that particular column j is

$$\sum_{i=1}^{|B|} \binom{|B|}{i} x^i = (1+x)^{|B|} - 1.$$

As the choices for different columns in A are independent, the ordinary generating function over all columns is

$$\left((1+x)^{|B|} - 1 \right)^{|A|}.$$

Fix $|A| = i$, so $|B| = n - i$. There are $\binom{n}{i}$ choices for A . Summing over all possible sizes i , we finally obtain the generating function

$$F(x; n) = \sum_{i=0}^n \binom{n}{i} \left((1+x)^{n-i} - 1 \right)^i.$$

□

Corollary 8. Let $S(n) = \sum_{k=0}^n |\mathcal{A}(n, k)|$ be the total number of $n \times n$ matrices that square to $\mathbf{0}$. Then

$$S(n) = \sum_{i=0}^n \binom{n}{i} (2^{n-i} - 1)^i.$$

n	0	1	2	3	4	5	6
$S(n)$	1	1	3	13	87	841	11643

Table 2: $S(n)$ for small values of n . (A001831)

3.2 Formulas

In this subsection, we give several formulas for $f(n, k)$. We begin with the following combinatorial lemma.

Lemma 9. *The number of directed bipartite graphs (S, T, E) with exactly k edges and no isolated vertices is given by*

$$\frac{s! t!}{k!} \sum_{i=0}^k (-1)^{k-i} \begin{bmatrix} k \\ i \end{bmatrix} \begin{Bmatrix} i \\ s \end{Bmatrix} \begin{Bmatrix} i \\ t \end{Bmatrix},$$

where $s = |S|$ and $t = |T|$.

Proof. By considering the adjacency matrix, there is a one-to-one correspondence between directed bipartite graphs with exactly k edges and no isolated vertices, and $s \times t$ $(0, 1)$ -matrices with exactly k 1's and no all-zero rows or columns.

Let $\#$ denote the number of such matrices (equivalently, the number of graphs). We count $\#$ using inclusion-exclusion. Let R_i and C_j denote the events that the i th row and j th column, respectively, are all zero. Then the number of matrices with no all-zero rows or columns is

$$\# = \sum_{A \subseteq S} \sum_{B \subseteq T} (-1)^{|A|+|B|} \left| \bigcap_{a \in A} R_a \cap \bigcap_{b \in B} C_b \right|.$$

Grouping the terms by the sizes of A and B gives

$$\# = \sum_{i=0}^s \sum_{j=0}^t \sum_{\substack{A \subseteq S \\ |A|=i}} \sum_{\substack{B \subseteq T \\ |B|=j}} (-1)^{i+j} \left| \bigcap_{a \in A} R_a \cap \bigcap_{b \in B} C_b \right|.$$

Fix $|A| = i$ and $|B| = j$. There are $\binom{s}{i}$ choices for A and $\binom{t}{j}$ choices for B . Consider the event $\bigcap_{a \in A} R_a \cap \bigcap_{b \in B} C_b$, in which the rows indexed by A and columns indexed by B are all zero. There are $(s-i)(t-j)$ remaining positions to place the k 1's in, so

$$\left| \bigcap_{a \in A} R_a \cap \bigcap_{b \in B} C_b \right| = \binom{(s-i)(t-j)}{k}.$$

Substituting these values into our expression for $\#$ yields

$$\# = \sum_{i=0}^s \sum_{j=0}^t (-1)^{i+j} \binom{s}{i} \binom{t}{j} \binom{(s-i)(t-j)}{k}.$$

Applying the combinatorial identities listed in [Proposition 4](#) finishes the proof.

$$\begin{aligned}
\# &= \sum_{i=0}^s \sum_{j=0}^t (-1)^{i+j} \binom{s}{i} \binom{t}{j} \binom{(s-i)(t-j)}{k} \\
&\stackrel{(4.1)}{=} \sum_{i=0}^s \sum_{j=0}^t (-1)^{i+j} \binom{s}{i} \binom{t}{j} \frac{((s-i)(t-j))_k}{k!} \\
&\stackrel{(4.3)}{=} \frac{1}{k!} \sum_{i=0}^s \sum_{j=0}^t (-1)^{i+j} \binom{s}{i} \binom{t}{j} \sum_{m=0}^k (-1)^{k-m} \binom{k}{m} (s-i)^m (t-j)^m \\
&= \frac{s! t!}{k!} \sum_{m=0}^k (-1)^{k-m} \binom{k}{m} \left[\frac{1}{s!} \sum_{i=0}^s (-1)^i \binom{s}{i} (s-i)^m \right] \left[\frac{1}{t!} \sum_{j=0}^t (-1)^j \binom{t}{j} (t-j)^m \right] \\
&\stackrel{(4.4)}{=} \frac{s! t!}{k!} \sum_{m=0}^k (-1)^{k-m} \binom{k}{m} \left\{ \begin{matrix} m \\ s \end{matrix} \right\} \left\{ \begin{matrix} m \\ t \end{matrix} \right\}.
\end{aligned}$$

□

With this result, we are ready to find a formula for $f(n, k)$.

Theorem B.

$$f(n, k) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \sum_{0 \leq s, t \leq i} \left\{ \begin{matrix} i \\ s \end{matrix} \right\} \left\{ \begin{matrix} i \\ t \end{matrix} \right\} (n)_{s+t}.$$

Proof. By [Proposition 3](#), there is a one-to-one correspondence between $\mathcal{A}(n, k)$ and the set of all directed graphs (V, E) with $|V| = n$ and $|E| = k$ that do not contain any directed walks of length 2. We count the number of such graphs.

Let S and T be the sets of vertices with non-zero outdegree and indegree respectively. Since all walks are of length one, the sets S and T are disjoint. Thus, for fixed sizes $s = |S|$ and $t = |T|$, there are $\binom{n}{s} \binom{n-s}{t}$ ways to choose S and T from V . Next, [Lemma 9](#) tells us that for any choice of S and T , there are

$$\frac{s! t!}{k!} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \left\{ \begin{matrix} i \\ s \end{matrix} \right\} \left\{ \begin{matrix} i \\ t \end{matrix} \right\}$$

ways to draw k edges from vertices in S to vertices in T . Enumerating over all possible sizes s and t , the number of directed graphs (and thus matrices) is

$$|\mathcal{A}(n, k)| = \sum_{s=0}^k \sum_{t=0}^k \binom{n}{s} \binom{n-s}{t} \frac{s! t!}{k!} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \left\{ \begin{matrix} i \\ s \end{matrix} \right\} \left\{ \begin{matrix} i \\ t \end{matrix} \right\}.$$

Writing $\binom{n}{s} \binom{n-s}{t}$ as $(n)_{s+t} / s! t!$ and noting that the summand vanishes when $s, t > i$, we obtain

$$f(n, k) = k! |\mathcal{A}(n, k)| = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \sum_{0 \leq s, t \leq i} \left\{ \begin{matrix} i \\ s \end{matrix} \right\} \left\{ \begin{matrix} i \\ t \end{matrix} \right\} (n)_{s+t}.$$

□

Remark. [Theorem B](#) generalizes the $k = 2$ case as discussed by the author in [\[7\]](#).

Applying [Identity \(4.4\)](#) to the formula given by [Theorem B](#), the triple sum collapses to the following double sum expression for $f(n, k)$.

Proposition 10.

$$f(n, k) = \sum_{i=0}^k (-1)^{k-i} \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{s=0}^i \begin{Bmatrix} i \\ s \end{Bmatrix} (n)_s (n-s)_i^i.$$

Proof. Write $(n)_{s+t} = (n)_s (n-s)_t$. By [Theorem B](#), this gives

$$\begin{aligned} f(n, k) &= \sum_{i=0}^k (-1)^{k-i} \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{s=0}^i \begin{Bmatrix} i \\ s \end{Bmatrix} (n)_s \sum_{t=0}^i \begin{Bmatrix} i \\ t \end{Bmatrix} (n-s)_t \\ &\stackrel{(4.4)}{=} \sum_{i=0}^k (-1)^{k-i} \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{s=0}^i \begin{Bmatrix} i \\ s \end{Bmatrix} (n)_s (n-s)_i^i. \end{aligned}$$

□

Next, we use [Theorem B](#) to write $f(n, k)$ as a polynomial in n , with coefficients depending on k .

Proposition 11.

$$f(n, k) = \sum_{p=0}^{2k} \left[(-1)^p \sum_{i=\lceil p/2 \rceil}^k (-1)^{k-i} \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{\substack{0 \leq s, t \leq i \\ s+t \geq p}} (-1)^{s+t} \begin{Bmatrix} i \\ s \end{Bmatrix} \begin{Bmatrix} i \\ t \end{Bmatrix} \begin{Bmatrix} s+t \\ p \end{Bmatrix} \right] n^p.$$

Proof. From [Theorem B](#), we have that

$$f(n, k) = \sum_{i=0}^k (-1)^{k-i} \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{s=0}^i \begin{Bmatrix} i \\ s \end{Bmatrix} (n)_s (n-s)_i^i.$$

Using [Identity \(4.3\)](#) to expand $(n)_{s+t}$ as a sum of monomials, we get

$$f(n, k) = \sum_{i=0}^k (-1)^{k-i} \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{0 \leq s, t \leq i} \begin{Bmatrix} i \\ s \end{Bmatrix} \begin{Bmatrix} i \\ t \end{Bmatrix} \sum_{p=0}^{s+t} (-1)^{s+t-p} \begin{Bmatrix} s+t \\ p \end{Bmatrix} n^p.$$

Interchanging the order of summation so that we sum over p first yields the desired expression. □

3.3 Stirling Transform and Chromatic Polynomials

Let $P(K_{k,k}, n)$ be the chromatic polynomial of the complete bipartite graph $K_{k,k}$. [\[6\]](#) gives the closed-form

$$P(K_{k,k}, n) = \sum_{0 \leq s, t \leq k} \begin{Bmatrix} k \\ s \end{Bmatrix} \begin{Bmatrix} k \\ t \end{Bmatrix} (n)_{s+t}.$$

It follows from [Theorem B](#) that $\{P(K_{k,k}, n)\}_{k \geq 0}$ is the Stirling transform of $\{f(n, k)\}_{k \geq 0}$.

Proposition 12. $P(K_{k,k}, n)$ has exponential generating function

$$\sum_{i=0}^n \begin{Bmatrix} n \\ i \end{Bmatrix} (\mathrm{e}^{xi} - 1)^{n-i}.$$

Proof. Let $G(x; n)$ be the exponential generating function of $\{P(K_{k,k}, n)\}_{k \geq 0}$. Since $\{P(K_{k,k}, n)\}_{k \geq 0}$ is the Stirling transform of $\{f(n, k)\}_{k \geq 0}$, we have by [Proposition 7](#) that $G(x; n) = F(\mathrm{e}^x - 1; n)$. Using the formula for $F(x; n)$ given in [Theorem A](#), we see that

$$G(x; n) = \sum_{i=0}^n \begin{Bmatrix} n \\ i \end{Bmatrix} (\mathrm{e}^{xi} - 1)^{n-i}.$$

□

3.4 Factorization

Proposition 13. For fixed n , the support of $f(n, k)$ is $k = 0, \dots, \lfloor n^2/4 \rfloor$.

Proof. The degree of the i th term of $F(x; n)$ is $i(n - i)$, which attains a maximum of $\lfloor n^2/4 \rfloor$ when $i = \lfloor n/2 \rfloor$. Thus, $f(n, k) = 0$ for all $k > \lfloor n^2/4 \rfloor$. To show that $f(n, k)$ is non-zero for $k = 0, \dots, \lfloor n^2/4 \rfloor$, it suffices to construct a matrix $\mathbf{A} \in \mathcal{A}(n, \lfloor n^2/4 \rfloor)$, since for any $k < \lfloor n^2/4 \rfloor$ a matrix in $\mathcal{A}(n, k)$ may be obtained by replacing some of the entries of \mathbf{A} from 1 to 0.

Let $\mathbf{0}_{a \times b}$ and $\mathbf{1}_{a \times b}$ denote the $a \times b$ blocks whose entries all 0 and 1, respectively. We construct \mathbf{A} according to the parity of n .

Case 1: n is even. Write $n = 2m$, so $\lfloor n^2/4 \rfloor = m^2$. Then

$$\mathbf{A} = \begin{pmatrix} \mathbf{0}_{m \times m} & \mathbf{1}_{m \times m} \\ \mathbf{0}_{m \times m} & \mathbf{0}_{m \times m} \end{pmatrix} \in \mathcal{A}(2m, m^2).$$

Case 2: n is odd. Write $n = 2m + 1$, so $\lfloor n^2/4 \rfloor = m^2 + m$. Then

$$\mathbf{A} = \begin{pmatrix} \mathbf{0}_{m \times m} & \mathbf{1}_{m \times (m+1)} \\ \mathbf{0}_{(m+1) \times m} & \mathbf{0}_{(m+1) \times (m+1)} \end{pmatrix} \in \mathcal{A}(2m + 1, m^2 + m).$$

□

Remark. In the case where $n = 2m$ is even, \mathbf{A} is the adjacency matrix of the directed complete bipartite graph $\vec{K}_{m,m}$. When $n = 2m + 1$ is odd, \mathbf{A} is the adjacency matrix of the directed complete bipartite graph $\vec{K}_{m,m+1}$.

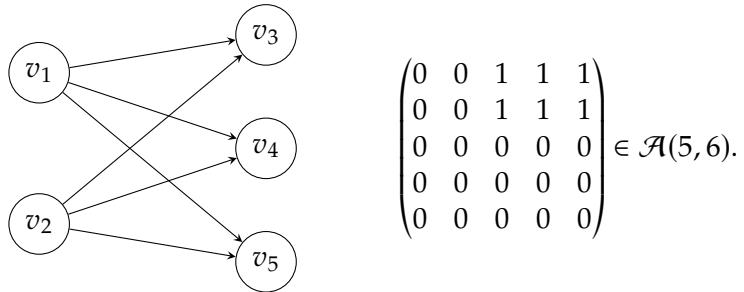


Figure 1: The directed complete bipartite graph $\vec{K}_{2,3}$ and its adjacency matrix.

Proposition 14. Fix k and let $\alpha_k = \lceil 2\sqrt{k} \rceil$. Then $f(n, k) = (n)_{\alpha_k} P(n, k)$ for some monic polynomial $P(n, k) \in \mathbb{Z}[n]$ of degree $2k - \alpha_k$ with no integer roots.

Proof. Recall from [Theorem B](#) that

$$f(n, k) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \sum_{0 \leq s, t \leq i} \binom{i}{s} \binom{i}{t} (n)_{s+t}.$$

It is easy to see that $f(n, k) \in \mathbb{Z}[n]$. Next, we note that $\deg((n)_{s+t}) = s + t \leq 2k$, with equality if and only if $s = t = i = k$. The corresponding term is

$$(-1)^{k-k} \binom{k}{k} \binom{k}{k} \binom{k}{k} (n)_{k+k} = (n)_{2k},$$

which is monic. It follows that $f(n, k)$ is a monic polynomial of degree $2k$.

By [Proposition 13](#), we see that $f(n, k)$ vanishes if and only if $n \leq \lceil 2\sqrt{k} \rceil = \alpha_k$. Thus, the only integer roots of $f(n, k)$ are $n = 0, 1, \dots, \alpha_k$, giving the factorization $f(n, k) = (n)_{\alpha_k} P(n, k)$, where $P(n, k) \in \mathbb{Z}[n]$ is a monic polynomial of degree $2k - \alpha_k$ with no integer roots. \square

k	$P(n, k)$
0	1
1	1
2	$-1 + n$
3	$4 - 3n + n^2$
4	$86 - 96n + 43n^2 - 10n^3 + n^4$
5	$-810 + 886n - 415n^2 + 105n^3 - 15n^4 + n^5$
6	$-46440 + 59752n - 34168n^2 + 11341n^3 - 2380n^4 + 320n^5 - 26n^6 + n^7$

Table 3: The polynomials $P(n, k)$ for $k = 1, \dots, 6$

References

- [1] M. Bernstein and N. J. A. Sloane. [Some canonical sequences of integers](#). *Linear Algebra and its Applications*, 226-228:57–72, 1995.
- [2] R. L. Graham, D. E. Knuth, and O. Patashnik. *Concrete Mathematics*. Addison-Wesley, Massachusetts, second edition, 1994.
- [3] G. Kilibarda and V. Jovovic. [Antichains of Multisets](#). *Journal of Integer Sequences*, 7, 2004.
- [4] OEIS Foundation Inc., 2026. The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org>.
- [5] J. Quaintance and H. W. Gould. *Combinatorial Identities for Stirling Numbers*. World Scientific, Singapore, 2016.
- [6] J. R. Swenson. [The Chromatic Polynomial of a Complete Bipartite Graph](#). *American Mathematical Monthly*, 80:797–798, 1973.
- [7] Various authors. Determine the probability that $A^2 = O$? Mathematics Stack Exchange. <https://math.stackexchange.com/q/4367731>. Accessed 2025-09-30.