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1 Introduction

Let 𝑛 and 𝑘 be non-negative integers, and define 𝒜(𝑛, 𝑘) to be the set of all 𝑛 × 𝑛 (0, 1)-
matrices containing exactly 𝑘 ones that square to 0. In this note, we investigate the function
𝑓 (𝑛, 𝑘) = 𝑘! |𝒜(𝑛, 𝑘)|.

𝑘

𝑓 (𝑛, 𝑘) 0 1 2 3 4 5 6 7 8 9

𝑛

0 1
1 1
2 1 2
3 1 6 6
4 1 12 36 32 6
5 1 20 120 280 280 120 20
6 1 30 300 1320 2910 3492 2400 960 210 20

Table 1: |𝒜(𝑛, 𝑘)| for small values of 𝑛 and 𝑘. (A052296)

2 Preliminaries

2.1 Graph Theory

We begin with some several elementary definitions in graph theory.

Definition 1 (Adjacency Matrices).

• Let (𝑉, 𝐸) be a directed graph whose vertices are indexed as 𝑉 = {𝑣1 , . . . , 𝑣𝑛}. Its
adjacency matrix is the 𝑛 × 𝑛 matrix M with entries given by

M𝑖 𝑗 =

{
1, if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸,
0, otherwise,

where 𝑖 , 𝑗 ∈ [𝑛].

• Let (𝑈,𝑊, 𝐸) be a directed bipartite graph whose partite sets are indexed as 𝑈 =

{𝑢1 , . . . , 𝑢𝑚} and𝑊 = {𝑤1 , . . . , 𝑤𝑛}. Its adjacency matrix is the 𝑚 × 𝑛 matrix M with
entries given by

M𝑖 𝑗 =

{
1, if (𝑢𝑖 , 𝑤 𝑗) ∈ 𝐸,
0, otherwise,

where 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛].
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Definition 2. A directed walk of length 𝑛 is a sequence of vertices 𝑣1 , . . . , 𝑣𝑛+1 (possibly with
repetition) such that there exists a directed edge (𝑣𝑖 , 𝑣𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛.

It is well-known that powers of an adjacency matrix are closely related to directed walks.

Proposition 3. Let M be the adjacency matrix of a directed graph whose vertices are indexed as
𝑉 = {𝑣1 , . . . , 𝑣𝑛}. Then (M𝑘)𝑖 𝑗 counts the number of directed walks of length 𝑘 from 𝑣𝑖 to 𝑣 𝑗 .

2.2 Combinatorics

The Stirling numbers of the first and second kind are written as
[
𝑛
𝑘

]
and

{
𝑛
𝑘

}
, respectively. The

falling factorial is written as (𝑥)𝑛 = 𝑥(𝑥 − 1) . . . (𝑥 − 𝑛 + 1). We write [𝑛] to mean the set
{1, . . . , 𝑛}.

Throughout this paper, we make use of the following well-known combinatorial
identities.

Proposition 4 ([2, 5]). Let 𝑛 and 𝑘 be non-negative integers with 𝑛 ≥ 𝑘, and 𝑥 a non-negative
real number.(

𝑛

𝑘

)
=

(𝑛)𝑘
𝑘! ,(4.1)

{
𝑛

𝑘

}
=

1
𝑘!

𝑘∑
𝑖=0

(−1)𝑘−𝑖
(
𝑘

𝑖

)
𝑖𝑛 ,(4.2)

(𝑥)𝑛 =

𝑛∑
𝑘=0

(−1)𝑛−𝑘
[
𝑛

𝑘

]
𝑥𝑛 ,(4.3)

𝑛∑
𝑘=0

{
𝑛

𝑘

}
(𝑥)𝑘 = 𝑥𝑛 .(4.4)

Definition 5. The Stirling transform of a sequence {𝑎𝑛}𝑛≥0, denoted 𝒮[{𝑎𝑛}𝑛≥0], is defined
to be the sequence {𝑏𝑛}𝑛≥0 given by

𝑏𝑛 =

∞∑
𝑘=0

{
𝑛

𝑘

}
𝑎𝑘 .

The inverse transform, denoted 𝒮−1[{𝑏𝑛}𝑛≥0], is

𝑎𝑛 =

∞∑
𝑘=0

(−1)𝑛−𝑘
[
𝑛

𝑘

]
𝑏𝑘 .

Example 6. From Identity (4.4), we see that 𝒮[{(𝑥)𝑛}𝑛≥0] = {𝑥𝑛}𝑛≥0. Conversely, Iden-
tity (4.3) tells us that 𝒮−1[{𝑥𝑛}𝑛≥0] = {(𝑥)𝑛}𝑛≥0.

Proposition 7 ([1]). Suppose 𝒮[{𝑎𝑛}𝑛≥0] = {𝑏𝑛}𝑛≥0 and define the exponential generating
functions

𝐴(𝑥) =
∞∑
𝑛=0

𝑎𝑛

𝑛! 𝑥
𝑛 and 𝐵(𝑥) =

∞∑
𝑛=0

𝑏𝑛

𝑛! 𝑥
𝑛 .

Then 𝐵(𝑥) = 𝐴(e𝑥 − 1).

3 Properties of 𝑓 (𝑛, 𝑘)
3.1 Generating Function

Theorem A. Let 𝐹(𝑥; 𝑛) =
∑∞
𝑘=0 𝑓 (𝑛, 𝑘) 𝑥𝑘/𝑘! be the exponential generating function of the

sequence { 𝑓 (𝑛, 𝑘)}𝑘≥0. Then

𝐹(𝑥; 𝑛) =
𝑛∑
𝑖=0

(
𝑛

𝑖

) (
(1 + 𝑥)𝑛−𝑖 − 1

) 𝑖
.
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This result appears in [3], but a proof was omitted. We provide a proof here for
completeness.

Proof. Note that

𝐹(𝑥; 𝑛) =
∞∑
𝑘=0

𝑓 (𝑛, 𝑘)
𝑘! 𝑥𝑘 =

∞∑
𝑘=0

|𝒜(𝑛, 𝑘)| 𝑥𝑘 .

We thus find the ordinary generating function for |𝒜(𝑛, 𝑘)|.
Let A ∈ ⋃

𝑘≥0 𝒜(𝑛, 𝑘). If A𝑖 𝑗 = 1, then A𝑗𝑚 = 0 for all 𝑚 ∈ [𝑛]; if A𝑗𝑚 = 1 for some
𝑚 ∈ [𝑛], we obtain the contradiction(

A2)
𝑖𝑚

=

𝑛∑
𝑡=1

A𝑖𝑡A𝑡𝑚 ≥ A𝑖 𝑗A𝑗𝑚 = 1 ≠ 0.

That is to say, if column 𝑗 has a 1, then row 𝑗 must be all zeroes.
Given two complementary sets 𝐴 and 𝐵 = [𝑛] \ 𝐴, we let 𝐴 be the indices of columns

that must have a 1, and 𝐵 the indices of rows that could have a 1. We now count the
number of ways to construct A given some choice of 𝐴. Within each column 𝑗 ∈ 𝐴, we
can only place 1’s in the rows indexed by 𝐵. Since the column cannot be all zeroes, this
amounts to choosing a non-empty subset of 𝐵. Hence, the generating function recording
all possibilities for that particular column 𝑗 is

|𝐵|∑
𝑖=1

(
|𝐵|
𝑖

)
𝑥 𝑖 = (1 + 𝑥)|𝐵| − 1.

As the choices for different columns in𝐴 are independent, the ordinary generating function
over all columns is (

(1 + 𝑥)|𝐵| − 1
) |𝐴|

.

Fix |𝐴| = 𝑖, so |𝐵| = 𝑛 − 𝑖. There are
(
𝑛
𝑖

)
choices for 𝐴. Summing over all possible sizes 𝑖,

we finally obtain the generating function

𝐹(𝑥; 𝑛) =
𝑛∑
𝑖=0

(
𝑛

𝑖

) (
(1 + 𝑥)𝑛−𝑖 − 1

) 𝑖
.

□

Corollary 8. Let 𝑆(𝑛) = ∑𝑛
𝑘=0 |𝒜(𝑛, 𝑘)| be the total number of 𝑛 × 𝑛 matrices that square to 0.

Then

𝑆(𝑛) =
𝑛∑
𝑖=0

(
𝑛

𝑖

) (
2𝑛−𝑖 − 1

) 𝑖
.

𝑛 0 1 2 3 4 5 6
𝑆(𝑛) 1 1 3 13 87 841 11643

Table 2: 𝑆(𝑛) for small values of 𝑛. (A001831)

3

https://oeis.org/A001831


3.2 Formulas

In this subsection, we give several formulas for 𝑓 (𝑛, 𝑘). We begin with the following
combinatorial lemma.

Lemma 9. The number of directed bipartite graphs (𝑆, 𝑇, 𝐸) with exactly 𝑘 edges and no isolated
vertices is given by

𝑠! 𝑡!
𝑘!

𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] {
𝑖

𝑠

}{
𝑖

𝑡

}
,

where 𝑠 = |𝑆| and 𝑡 = |𝑇|.

Proof. By considering the adjacency matrix, there is a one-to-one correspondence between
directed bipartite graphs with exactly 𝑘 edges and no isolated vertices, and 𝑠 × 𝑡 (0, 1)-
matrices with exactly 𝑘 1’s and no all-zero rows or columns.

Let # denote the number of such matrices (equivalently, the number of graphs). We
count # using inclusion-exclusion. Let 𝑅𝑖 and 𝐶 𝑗 denote the events that the 𝑖th row and
𝑗th column, respectively, are all zero. Then the number of matrices with no all-zero rows
or columns is

# =

∑
𝐴⊆𝑆

∑
𝐵⊆𝑇

(−1)|𝐴|+|𝐵|
�����⋂
𝑎∈𝐴

𝑅𝑎 ∩
⋂
𝑏∈𝐵

𝐶𝑏

����� .
Grouping the terms by the sizes of 𝐴 and 𝐵 gives

# =

𝑠∑
𝑖=0

𝑡∑
𝑗=0

∑
𝐴⊆𝑆
|𝐴|=𝑖

∑
𝐵⊆𝑇
|𝐵|=𝑗

(−1)𝑖+𝑗
�����⋂
𝑎∈𝐴

𝑅𝑎 ∩
⋂
𝑏∈𝐵

𝐶𝑏

����� .
Fix |𝐴| = 𝑖 and |𝐵| = 𝑗. There are

(
𝑠
𝑖

)
choices for 𝐴 and

(
𝑡
𝑗

)
choices for 𝐵. Consider the

event
⋂
𝑎∈𝐴 𝑅𝑎 ∩

⋂
𝑏∈𝐵 𝐶𝑏 , in which the rows indexed by 𝐴 and columns indexed by 𝐵 are

all zero. There are (𝑠 − 𝑖)(𝑡 − 𝑗) remaining positions to place the 𝑘 1’s in, so�����⋂
𝑎∈𝐴

𝑅𝑎 ∩
⋂
𝑏∈𝐵

𝐶𝑏

����� = (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
.

Substituting these values into our expression for # yields

# =

𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
.

Applying the combinatorial identities listed in Proposition 4 finishes the proof.

4



# =

𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
(4.1)
=

𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) ((𝑠 − 𝑖)(𝑡 − 𝑗))𝑘
𝑘!

(4.3)
=

1
𝑘!

𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) 𝑘∑
𝑚=0

(−1)𝑘−𝑚
[
𝑘

𝑚

]
(𝑠 − 𝑖)𝑚(𝑡 − 𝑗)𝑚

=
𝑠! 𝑡!
𝑘!

𝑘∑
𝑚=0

(−1)𝑘−𝑚
[
𝑘

𝑚

] [
1
𝑠!

𝑠∑
𝑖=0

(−1)𝑖
(
𝑠

𝑖

)
(𝑠 − 𝑖)𝑚

]  1
𝑡!

𝑡∑
𝑗=0

(−1)𝑗
(
𝑡

𝑗

)
(𝑡 − 𝑗)𝑚


(4.4)
=

𝑠! 𝑡!
𝑘!

𝑘∑
𝑚=0

(−1)𝑘−𝑚
[
𝑘

𝑚

] {
𝑚

𝑠

}{
𝑚

𝑡

}
.

□

With this result, we are ready to find a formula for 𝑓 (𝑛, 𝑘).

Theorem B.

𝑓 (𝑛, 𝑘) =
𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] ∑
0≤𝑠,𝑡≤𝑖

{
𝑖

𝑠

}{
𝑖

𝑡

}
(𝑛)𝑠+𝑡 .

Proof. By Proposition 3, there is a one-to-one correspondence between 𝒜(𝑛, 𝑘) and the
set of all directed graphs (𝑉, 𝐸) with |𝑉| = 𝑛 and |𝐸| = 𝑘 that do not contain any directed
walks of length 2. We count the number of such graphs.

Let 𝑆 and 𝑇 be the sets of vertices with non-zero outdegree and indegree respectively.
Since all walks are of length one, the sets 𝑆 and 𝑇 are disjoint. Thus, for fixed sizes 𝑠 = |𝑆|
and 𝑡 = |𝑇|, there are

(
𝑛
𝑠

) (
𝑛−𝑠
𝑡

)
ways to choose 𝑆 and 𝑇 from 𝑉 . Next, Lemma 9 tells us that

for any choice of 𝑆 and 𝑇, there are

𝑠! 𝑡!
𝑘!

𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] {
𝑖

𝑠

}{
𝑖

𝑡

}
ways to draw 𝑘 edges from vertices in 𝑆 to vertices in 𝑇. Enumerating over all possible
sizes 𝑠 and 𝑡, the number of directed graphs (and thus matrices) is

|𝒜(𝑛, 𝑘)| =
𝑘∑
𝑠=0

𝑘∑
𝑡=0

(
𝑛

𝑠

) (
𝑛 − 𝑠
𝑡

)
𝑠! 𝑡!
𝑘!

𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] {
𝑖

𝑠

}{
𝑖

𝑡

}
.

Writing
(
𝑛
𝑠

) (
𝑛−𝑠
𝑡

)
as (𝑛)𝑠+𝑡/𝑠! 𝑡! and noting that the summand vanishes when 𝑠, 𝑡 > 𝑖, we

obtain

𝑓 (𝑛, 𝑘) = 𝑘! |𝒜(𝑛, 𝑘)| =
𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] ∑
0≤𝑠,𝑡≤𝑖

{
𝑖

𝑠

}{
𝑖

𝑡

}
(𝑛)𝑠+𝑡 .

□

Remark. Theorem B generalizes the 𝑘 = 2 case as discussed by the author in [7].
Applying Identity (4.4) to the formula given by Theorem B, the triple sum collapses to

the following double sum expression for 𝑓 (𝑛, 𝑘).
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Proposition 10.

𝑓 (𝑛, 𝑘) =
𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] 𝑖∑
𝑠=0

{
𝑖

𝑠

}
(𝑛)𝑠(𝑛 − 𝑠)𝑖 .

Proof. Write (𝑛)𝑠+𝑡 = (𝑛)𝑠(𝑛 − 𝑠)𝑡 . By Theorem B, this gives

𝑓 (𝑛, 𝑘) =
𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] 𝑖∑
𝑠=0

{
𝑖

𝑠

}
(𝑛)𝑠

𝑖∑
𝑡=0

{
𝑖

𝑡

}
(𝑛 − 𝑠)𝑡

(4.4)
=

𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] 𝑖∑
𝑠=0

{
𝑖

𝑠

}
(𝑛)𝑠(𝑛 − 𝑠)𝑖 .

□

Next, we use Theorem B to write 𝑓 (𝑛, 𝑘) as a polynomial in 𝑛, with coefficients depending
on 𝑘.
Proposition 11.

𝑓 (𝑛, 𝑘) =
2𝑘∑
𝑝=0

(−1)𝑝
𝑘∑

𝑖=⌈𝑝/2⌉
(−1)𝑘−𝑖

[
𝑘

𝑖

] ∑
0≤𝑠,𝑡≤𝑖
𝑠+𝑡≥𝑝

(−1)𝑠+𝑡
{
𝑖

𝑠

}{
𝑖

𝑡

} [
𝑠 + 𝑡
𝑝

] 𝑛
𝑝 .

Proof. From Theorem B, we have that

𝑓 (𝑛, 𝑘) =
𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] 𝑖∑
𝑠=0

{
𝑖

𝑠

}
(𝑛)𝑠(𝑛 − 𝑠)𝑖 .

Using Identity (4.3) to expand (𝑛)𝑠+𝑡 as a sum of monomials, we get

𝑓 (𝑛, 𝑘) =
𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] ∑
0≤𝑠,𝑡≤𝑖

{
𝑖

𝑠

}{
𝑖

𝑡

} 𝑠+𝑡∑
𝑝=0

(−1)𝑠+𝑡−𝑝
[
𝑠 + 𝑡
𝑝

]
𝑛𝑝 .

Interchanging the order of summation so that we sum over 𝑝 first yields the desired
expression. □

3.3 Stirling Transform and Chromatic Polynomials

Let 𝑃(𝐾𝑘,𝑘 , 𝑛) be the chromatic polynomial of the complete bipartite graph 𝐾𝑘,𝑘 . [6] gives
the closed-form

𝑃(𝐾𝑘,𝑘 , 𝑛) =
∑

0≤𝑠,𝑡≤𝑘

{
𝑘

𝑠

}{
𝑘

𝑡

}
(𝑛)𝑠+𝑡 .

It follows from Theorem B that {𝑃(𝐾𝑘,𝑘 , 𝑛)}𝑘≥0 is the Stirling transform of { 𝑓 (𝑛, 𝑘)}𝑘≥0.
Proposition 12. 𝑃(𝐾𝑘,𝑘 , 𝑛) has exponential generating function

𝑛∑
𝑖=0

(
𝑛

𝑖

) (
e𝑥𝑖 − 1

)𝑛−𝑖
.

Proof. Let 𝐺(𝑥; 𝑛) be the exponential generating function of {𝑃(𝐾𝑘,𝑘 , 𝑛)}𝑘≥0. Since
{𝑃(𝐾𝑘,𝑘 , 𝑛)}𝑘≥0 is the Stirling transform of { 𝑓 (𝑛, 𝑘)}𝑘≥0, we have by Proposition 7 that
𝐺(𝑥; 𝑛) = 𝐹(e𝑥 − 1; 𝑛). Using the formula for 𝐹(𝑥; 𝑛) given in Theorem A, we see that

𝐺(𝑥; 𝑛) =
𝑛∑
𝑖=0

(
𝑛

𝑖

) (
e𝑥𝑖 − 1

)𝑛−𝑖
.

□

6



3.4 Factorization

Proposition 13. For fixed 𝑛, the support of 𝑓 (𝑛, 𝑘) is 𝑘 = 0, . . . , ⌊𝑛2/4⌋.

Proof. The degree of the 𝑖th term of 𝐹(𝑥; 𝑛) is 𝑖(𝑛 − 𝑖), which attains a maximum of ⌊𝑛2/4⌋
when 𝑖 = ⌊𝑛/2⌋. Thus, 𝑓 (𝑛, 𝑘) = 0 for all 𝑘 > ⌊𝑛2/4⌋. To show that 𝑓 (𝑛, 𝑘) is non-zero
for 𝑘 = 0, . . . , ⌊𝑛2/4⌋, it suffices to construct a matrix A ∈ 𝒜(𝑛, ⌊𝑛2/4⌋), since for any
𝑘 < ⌊𝑛2/4⌋ a matrix in 𝒜(𝑛, 𝑘) may be obtained by replacing some of the entries of A from
1 to 0.

Let 0𝑎×𝑏 and 1𝑎×𝑏 denote the 𝑎 × 𝑏 blocks whose entries all 0 and 1, respectively. We
construct A according to the parity of 𝑛.

Case 1: 𝑛 is even. Write 𝑛 = 2𝑚, so ⌊𝑛2/4⌋ = 𝑚2. Then

A =

(
0𝑚×𝑚 1𝑚×𝑚
0𝑚×𝑚 0𝑚×𝑚

)
∈ 𝒜(2𝑚, 𝑚2).

Case 2: 𝑛 is odd. Write 𝑛 = 2𝑚 + 1, so ⌊𝑛2/4⌋ = 𝑚2 + 𝑚. Then

A =

(
0𝑚×𝑚 1𝑚×(𝑚+1)
0(𝑚+1)×𝑚 0(𝑚+1)×(𝑚+1)

)
∈ 𝒜(2𝑚 + 1, 𝑚2 + 𝑚).

□

Remark. In the case where 𝑛 = 2𝑚 is even, A is the adjacency matrix of the directed
complete bipartite graph

−→
𝐾 𝑚,𝑚 . When 𝑛 = 2𝑚 + 1 is odd, A is the adjacency matrix of the

directed complete bipartite graph
−→
𝐾 𝑚,𝑚+1.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

©­­­­­«
0 0 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®¬
∈ 𝒜(5, 6).

Figure 1: The directed complete bipartite graph
−→
𝐾 2,3 and its adjacency matrix.

Proposition 14. Fix 𝑘 and let 𝛼𝑘 = ⌈2
√
𝑘⌉. Then 𝑓 (𝑛, 𝑘) = (𝑛)𝛼𝑘𝑃(𝑛, 𝑘) for some monic

polynomial 𝑃(𝑛, 𝑘) ∈ Z[𝑛] of degree 2𝑘 − 𝛼𝑘 with no integer roots.

Proof. Recall from Theorem B that

𝑓 (𝑛, 𝑘) =
𝑘∑
𝑖=0

(−1)𝑘−𝑖
[
𝑘

𝑖

] ∑
0≤𝑠,𝑡≤𝑖

{
𝑖

𝑠

}{
𝑖

𝑡

}
(𝑛)𝑠+𝑡 .

It is easy to see that 𝑓 (𝑛, 𝑘) ∈ Z[𝑛]. Next, we note that deg ((𝑛)𝑠+𝑡) = 𝑠 + 𝑡 ≤ 2𝑘, with
equality if and only if 𝑠 = 𝑡 = 𝑖 = 𝑘. The corresponding term is

(−1)𝑘−𝑘
[
𝑘

𝑘

] {
𝑘

𝑘

}{
𝑘

𝑘

}
(𝑛)𝑘+𝑘 = (𝑛)2𝑘 ,
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which is monic. It follows that 𝑓 (𝑛, 𝑘) is a monic polynomial of degree 2𝑘.
By Proposition 13, we see that 𝑓 (𝑛, 𝑘) vanishes if and only if 𝑛 ≤ ⌈2

√
𝑘⌉ = 𝛼𝑘 . Thus,

the only integer roots of 𝑓 (𝑛, 𝑘) are 𝑛 = 0, 1, . . . , 𝛼𝑘 , giving the factorization 𝑓 (𝑛, 𝑘) =
(𝑛)𝛼𝑘𝑃(𝑛, 𝑘), where 𝑃(𝑛, 𝑘) ∈ Z[𝑛] is a monic polynomial of degree 2𝑘 − 𝛼𝑘 with no integer
roots. □

𝑘 𝑃(𝑛, 𝑘)
0 1
1 1
2 −1 + 𝑛
3 4 − 3𝑛 + 𝑛2

4 86 − 96𝑛 + 43𝑛2 − 10𝑛3 + 𝑛4

5 −810 + 886𝑛 − 415𝑛2 + 105𝑛3 − 15𝑛4 + 𝑛5

6 −46440 + 59752𝑛 − 34168𝑛2 + 11341𝑛3 − 2380𝑛4 + 320𝑛5 − 26𝑛6 + 𝑛7

Table 3: The polynomials 𝑃(𝑛, 𝑘) for 𝑘 = 1, . . . , 6
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